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Three different methods are applied to generate low resolution molecular electron density
(ED) distribution functions: a crystallography-based formalism, an analytical approach which
allows the calculation of a promolecular ED distribution in terms of a weighted summation
over atomic ED distributions, and a wavelet-based multiresolution analysis approach. Critical
point graph representations of the molecular ED distributions are then generated by locating
points where the gradient of the density is equal to zero, and further considered for pairwise
molecular superpositions of thrombin inhibitors using a Monte Carlo/Simulated Annealing
technique.
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1. Introduction

Computer resources have now become sufficiently powerful to enable simulations
of large systems (10,000–50,000 atoms) with realistic mathematical models at a classical
level. Therefore, biological macromolecules and supramolecular complexes, for exam-
ple, can be studied in atomic detail using simulation techniques. However, when systems
include large numbers of degrees of freedom and/or environment considerations, a sys-
tematic search of energy minima is still untractable. Large biomolecules, for instance,
hence require simplified models [1]. Atomic descriptions of large scale conformational
changes, for example, those inherent in protein folding, remain computationally inac-
cessible due to the large number of conformational states, the multiple minima problem,
and the multiple time scales: from 1 fs for a chemical bond vibration to about 1 s for
the folding process. Thus, constraining degrees of freedom and/or reducing the level of
resolution are helpful ways to circumvent some problems.
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In proteins, amino acid residues can be depicted using a lower level representation,
i.e., two or three pseudo-atoms rather than by an all-atom representation. The advantage
of using non-atomic representations is, however, not limited to the increase of the speed
of computations. Simplified representations of protein geometry have also been used
by many groups to reduce sensitivity to small perturbations in conformation, e.g., when
docking a ligand versus a receptor [2,3]. Janin et al. [2] replaced amino acid residues
with spheres of varying size and performed docking to maximize the buried surface area.
Simulating proteins at low resolution is also a way to overcome structural inaccuracies
issued from NMR data or from an approximate model [4]. In their paper, Vakser et al. [4]
digitized a protein image onto a three-dimensional grid. Any grid point outside the mole-
cular volume determined was set equal to 0, otherwise it was set equal to a numerical
value corresponding to the protein surface or to the protein core [5]. The structural ele-
ments smaller than the grid interval were thus eliminated from the initial protein struc-
ture. In molecular graphics, fast comparisons of protein structures at a predetermined
level of detail can be achieved using wavelet analysis [6]. In this work, Carson applied
B-spline filters to the modeling of protein backbones, folds, as well as surfaces (rep-
resented using Nurbs, i.e., non-uniform rational B-spline surfaces). He also suggested
an implication in structure-based drug design. In that sense, Ritchie et al. [7] later sug-
gested that surface representations which contain too high resolution details may not be
particularly convenient to search for regions of similarity or complementarity between
two molecules. The authors therefore proposed the use of low resolution real spheri-
cal harmonics to represent and compare macromolecular surface shapes. Rotations of a
molecular surface can thus be simulated by rotating only the harmonic expansion coeffi-
cients. Particularly, it was determined that, contrarily to small molecules for which low
order multipoles (L = 2 or 3) can be used, higher order harmonic expansions (between
L = 5 and L = 9) are needed for a good surface matching involving globular molecules.
Smooth molecular shapes can also be obtained by convolving a molecular surface with
a three-dimensional Gaussian function of appropriate variance. Duncan and Olson [8]
proposed applications of such a method to automated molecular docking procedures.

In DNA, structural elements such as chains and bases can be modeled as rigid
segments connected through energetic terms [9–11]. Particularly, Butzlaff et al. [9,10]
described an approach which reduces the number of free variables by assembling cer-
tain groups of atoms into configurational structures with less degrees of freedom. Corre-
sponding potential energy functions were constructed with respect to these new variables
using methods from the theory of splines and radial basis functions. DNA is, under such
a description, represented by two kinds of rigid substructures: the bases and the phos-
phate groups, and one rotational group: the ribose subunit.

The idea of grouping atoms together was also achieved in a completely different
approach. For example, Takahashi et al. [12] described organic structures in terms of
graphs wherein each node represents a functional group and the edge between any two
nodes is weighted by the topological path length (the number of bonds). In such a way,
searching for common or structural features between those reduced-graph representa-
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tions is similar to finding a common pharmacophore model shared by biologically active
molecules.

Low resolution representations are also extremely useful in the refinement or inter-
pretation of images generated by experimental approaches such as electron microscopy
or X-ray diffraction. For example, a current challenge in structural biology is to establish
the structure of complex systems. Such structure elucidations require high resolution
structural determination methods to generate atomic models of the individual compo-
nents. Then, complexes created from the well-resolved individual components are im-
aged at lower resolution to validate the interpretation of the experimental low resolution
global structure [13]. Another potential application to low resolution experimental data
is the restoration of noisy images. The principle of multiresolution analysis based on
wavelet theory (WMRA) was shown to be adapted to such problems [14]. Performing
a WMRA consists in the decomposition of an image into its details corresponding to a
range of resolution levels. A particular application in the field of chemistry can be found
in [15] wherein a WMRA was applied to restore two-dimensional X-ray topographs
damaged by Gaussian noise.

The purpose of the present paper consists in assessing low resolution representa-
tions of molecular structures in their ability to carry enough information to determine
similarities between various molecular structures described in terms of their electron
density (ED) distribution. In the proposed methodology, molecular structures are rep-
resented at various levels of resolution in terms of critical point (CP) graphs obtained
using a topological analysis procedure of their ED distribution functions.

In the next section, the theoretical background of CP analysis is presented. It is
followed, in section 3, by the mathematical background of the three methods selected to
generate low resolution ED maps. These three methods are based on a crystallography
formalism, on a WMRA technique, and on a smoothing procedure of analytical ED
functions, respectively. Applications to the comparison of three thrombin inhibitors and
results are then reported in section 4.

2. Theoretical background

In this section, the concept of topological analysis of electron density maps is pre-
sented through the project “Molecular Scene Analysis” which was initiated in the field of
protein crystallography. Then, the three approaches selected to generate low resolution
molecular electron density maps are detailed at a mathematical level.

2.1. Molecular scene analysis

The concept of “scene analysis” is normally used in the context of machine vision
to refer to the set of processes associated with the classification and understanding of
complex images. Such analyses rely on the availability of a priori information, both
in the form of structural templates and in the form of rules or heuristics, to locate and
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identify features in a scene. By analogy, Glasgow et al. [16] use the phrase “molecu-
lar scene analysis” (MSA) to refer to the processes associated with the interpretation of
molecular structures and molecular interactions. A goal of the MSA project is to facili-
tate the image reconstruction processes for protein electron density maps [17–20]. This
requires a simplified representation of a protein structure, one that preserves relevant
shape, connectivity and distance information. One of the particular MSA applications
consists in the identification of structural motifs through a similarity search procedure
between templates as established from a statistical analysis of PDB structures on one
side, and observed critical point graph segments on the other [18].

2.2. Critical point analysis

Electron density (ED) and molecular electrostatic potential (MEP) are seen as prop-
erties of prime importance in the description of molecular interactions. Several molecu-
lar similarity evaluation approaches are thus based on refined molecular field matching
techniques. For example, similarity quantifiers applicable to steric volume and electro-
static fields have been implemented in the program MIMIC [21]. This program calcu-
lates the so-called Carbó index [22], one of the most widely used molecular similarity
measure between molecules. This index was originally dedicated to the comparison of
molecular ED distributions.

Orientation-independent descriptors possess the obvious advantage of avoiding
molecular translation and reorientation operations when matching two or more mole-
cular structures. In this context, reference studies were achieved by Mezey [23] through
his Shape Group method which allows the characterization of molecular surfaces (van
der Waals envelopes, iso-density contours, MEP iso-contours, etc.) using curvature in-
formation. A molecular surface is partitioned into domains whose specific arrangement
is described in terms of homology groups characterized by their ranks, or Betti num-
bers [24,25]. Bader [26] established a topological analysis method of three-dimensional
ED distributions in terms of the number and kind of their critical points (CP), i.e., the
points where the gradient of the density is equal to zero. Each CP can be identified by
its corresponding 3 × 3 Hessian matrix H( �r ) which is built on the local second deriv-
atives of the ED function. In Bader’s theory of atoms in molecules (AIM), each atom
is associated with an attractor and its basin bounded by a zero-flux surface over which
many atomic properties can be integrated. This yields a unique partitioning of a total
system into a set of bounded spatial regions. The CPs are linked through a gradient
vector field analysis to generate a graph whose vertices and edges are CPs and gradient
trajectories, respectively. Popelier [27] has later extended this approach to include the
concept of molecular similarity. The author proposed to use the properties of bond criti-
cal points (BCP), i.e., the density value, Laplacian, and ellipticity, extracted from quan-
tum mechanical ab initio wavefunctions. Similarly to Bader’s approach, Johnson [28]
developed a CP analysis method, based on Morse theory, for the location, identification,
and connection of CP trees in experimental protein ED maps. His method was aimed at
the automated interpretation of X-ray diffraction data for protein structures.
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MEP functions have also been the subject of topological/topographical analysis
studies [29,30]. For example, Willett and coworkers [31,32] developed an approach
where grid points with MEP values ranging below or beyond given cut-off values are
merged into single points which are further connected depending upon their closeness.
Such graph representations facilitate the alignment of MEP fields using genetic algo-
rithms. Recently, Leboeuf et al. [33] implemented a new algorithm in their program
ALLCHEM for the topological analysis of MEP functions determined using Density
Functional theory.

Details regarding the CP analysis approach applied in the present work have been
presented elsewhere [34–36]. However, a brief overview of the approach is described in
this paper as a reminder of the methodology.

In the proposed topological approach to low resolution ED molecular distributions,
a molecule is segmented into its meaningful parts through the location and identification
of the points in the ED map where the gradients vanish. The second derivatives are
used to determine the nature of the CP. For each CP, the corresponding Hessian matrix
is constructed:

H
(�r) =
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This matrix is then diagonalized:

H′
(�r) =


∂2ρ

∂x′ 2
0 0

0
∂2ρ

∂y′ 2
0

0 0
∂2ρ

∂z′ 2

 . (2)

The three nonzero diagonal elements of array H′( �r ), the eigenvalues, are used to
determine the type of CPs of the ED map. Four possible cases are considered depending
upon the number of negative eigenvalues nE. When nE = 3, the CP corresponds to a
local maximum or peak. A point where nE = 2 is a saddle point or pass. nE = 1
corresponds to a saddle point or pale, while nE = 0 characterizes a pit. This method is
implemented in the program ORCRIT [28] which was initially aimed at the automated
interpretation of X-ray diffraction data for protein structures.
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3. Multiresolution analysis

In previous works, the program XTAL [37] was the main computation tool that
was used to generate low resolution ED distributions of various molecular systems [34–
36,38–40]. Hypothetical crystal parameters had to be assumed to generate such pro-
molecular charge distributions. In the present work, two different approaches, which
do not require neither the knowledge nor the assumption of any crystal parameter, are
also applied. They are based on the calculation of ρ( �r ) using quantum mechanics
formalisms. In the first approach, full ED distributions were generated using the pro-
gram Gaussian94 [41] and were further smoothed using a wavelet-based multiresolution
analysis. In the second approach, a promolecular ED distribution ρM was calculated as
a weighted summation over atomic ED distributions ρa which are described in terms
of series of squared Gaussian functions [42]. Smoothed ED versions were generated
analytically as solutions of the diffusion equation ∇2ρ = ∂ρ/∂t [43].

3.1. The concept of resolution in crystallography

The intensity of X-rays diffracted by a crystalline structure is proportional to the
modulus of their corresponding structure factor F(�h):

F
(�h) = nat∑

j=1

fje
−Bj (sin θ/λ)2e−2π i�h·�rj , (3)

where fj and Bj are the atomic scattering factor and the thermal agitation factor of
atom j , respectively, 2θ is the angle between the diffracted and the primary beams of
wavelength λ, and �h is a reciprocal space vector. Within the crystallographic approach,
the electron density (ED) distribution function ρ( �r ) is calculated as the Fourier trans-
form of F(�h):

ρ
(�r) = F̂ (�r) = 1

Vunit-cell

+∞∑
�h=−∞

F
(�h)e−2π i�h·�r . (4)

In practice, the number of known structure factors is not infinite and varies with
resolution.

In crystallography, the resolution factor dmin is a well-known concept which is
theoretically defined using Bragg’s law:

(
sin θ

λ

)
max

= 1

2dmin
, (5)

where dmin depends on different factors such as the quality of the crystal, the chemical
composition, the radiation used, the temperature of the experiment, etc.
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3.2. Wavelet-based multiresolution analysis

To our knowledge, only few applications of wavelet-based multiresolution analy-
sis (WMRA) to chemical sciences, particularly structural chemistry, exist. In practice,
wavelet theory is most commonly applied to the treatment of signal processing in analyt-
ical chemistry [44] and for the representation of wavefunctions and orbitals in electronic
structure calculations [45–47].

3.2.1. Wavelet transforms
A wavelet transform (WT) is a localized transform in both space (time) and fre-

quency which uses integration kernels called wavelets. A basis set of wavelet functions
{�ab(x)} is built on translated and dilated versions of a so-called mother wavelet�(x):

�ab(x) = 1√|a|�
(
x − b
a

)
with a ∈ R0, b ∈ R, (6)

where a is the scaling parameter which allows to capture changes in frequency, and b
is the shift along the x axis applied to analyze space (time)-dependent variations of a
signal. A detailed mathematical introduction to the continuous wavelet transform can be
found in [48,49].

The projection Wf of a square integrable signal f , i.e.,
∫ +∞
−∞ |f (x)|2 dx �= ∞,

onto this basis according to

Wf (a, b)=
∫ +∞
−∞

f (x)�∗ab(x) dx (7)

= 〈f,�ab〉 (8)

is the result from the wavelet transform. ∗ denotes the complex conjugate.
If the wavelet function � satisfies the admissibility condition, i.e.:

C� =
∫ +∞
−∞
|�̂(ω)|2
ω

dω < +∞, (9)

where �̂(ω) is the Fourier transform of the function �(x), then the continuous wavelet
transformWf (a, b) is invertible such as f (x) can be reconstructed using

f (x) = 1

C�

∫ +∞
−∞

∫ +∞
−∞
Wf (a, b)�ab(x)

da db

a2
. (10)

From the admissibility condition, it follows that �̂(0) must be equal to zero, i.e., � has
a mean equal to zero. � is thus an oscillating function, and this, together with the decay
property, justifies the name wavelet.

In addition, � is often required to have a certain number p of vanishing moments:∫ +∞
−∞

xn�(x) dx = 0, n = 0, 1, . . . , p − 1. (11)
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This property improves the efficiency of � at detecting discontinuities in the (p − 1)th
derivative of a signal.

For numerical purposes, the continuous WT can be discretized, by restricting the
parameters a and b to the points of a dyadic lattice. Thus, if a and b/a are set equal to
2−j and 1, respectively, equations (6) and (10) are written as

�jk = 2j/2�
(
2j x − k), with j, k ∈ Z, (12)

f (x)=
∑
j,k

〈f,�jk〉�jk(x) (13)

using the bracket notation introduced in equation (8).

3.2.2. Multiresolution analysis
One of the successes of the WT was the discovery that it is possible to construct

functions � for which {�jk, j, k ∈ Z} is an orthonormal basis of L2(R) [50]. The
construction of the so-called Daubechies’ wavelet functions is derived from a multireso-
lution analysis which is a mathematical construction used to express an arbitrary function
f ∈ L2(R) at various levels of detail. Function f (x) is developed as in equation (13)
where 〈f,�jk〉, also written djk , are called the wavelet coefficients.

Mallat [51] proposed a multiresolution theorywhere a fast and nonredundant
wavelet transform was demonstrated. The fast wavelet transform is performed by a set
of bandpass filters constructed using a combination of low- and high-pass filters. The
low-pass filter corresponds to the so-called scaling function#, and the high-pass fil-
ter corresponds to the wavelet function �. In practice, the wavelet expansion (like the
Fourier expansion) is truncated at some scale J :

f (x) =
∑
k

cJk#Jk(x)+
J0−1∑
j=J

∑
k

djk�jk(x), (14)

where it is chosen here to set the resolution of the original signal J0 equal to zero. Thus,
lower resolution signals are characterized by negative values for J . Relation (14) can
be understood as follows. The first sum is a coarse representation of f , where f is
replaced by a linear combination of a finite number of translations of the scaling func-
tions #J0(x). The remaining terms are refinements (details) determined at each scale
j by translations of the wavelet �j0(x) that are added to obtain a successively more
detailed approximation of f .

Coefficients cJk are projections of the function f ∈ L2(R) onto a space built on
the basis set {#Jk(x)}:

cJk = 〈f,#Jk〉. (15)

Let us consider a function # such as the family {#(x− k), k ∈ Z} is an orthogonal
basis of a vector space denoted V0. It is convenient to define the approximation space Vj ,
i.e., the space of all combinations of#’s at level j . The space of all combinations of �’s
at level j is denoted Wj . A wavelet-based multiresolution analysis (WMRA) will thus
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be defined as a sequence of closed subspaces Vj of L2(R), j ∈ Z, with the following
properties [50]:

Vj ⊂ Vj+1 (16)

such that
+∞⋂
j=−∞

Vj = ∅ and
+∞⋃
j=−∞

Vj = L2(R), with j ∈ Z (17)

and

∀f ∈ L2(R), f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1. (18)

Since the set {#(x − k)} is an orthonormal basis for V0, it follows by repeated
applications of axiom (18) and the property of shift invariance

∀f ∈ L2(R), ∀k ∈ Z, f (x) ∈ V0 ⇔ f (x − k) ∈ V0 (19)

that {#(2jx − k)} is an orthonormal basis for Vj .

The detail spaces. Given the nested subspaces Vj , Wj is defined to be the orthogonal
complement of Vj in Vj−1, i.e., Vj ⊥Wj and

Vj = Vj−1 ⊕Wj−1 (20)

which is the key statement of the WMRA [49].
In terms of approximation and detail spaces, relation (14) becomes

VJ0 = VJ ⊕WJ ⊕WJ+1 ⊕WJ+2 ⊕ · · · ⊕WJ0−1 = VJ ⊕
(
J0−1⊕
j=J

Wj

)
. (21)

The refinement equation.Let us consider V0 and V1, such that V0 ⊂ V1. These two
subspaces are generated by integer translates of #(x) and #(2x), respectively. The
subspace relation implies that #(x), #00(x), must be generated by the finer scale func-
tions #(2x − k):

#(x) = √2
∑
k

hk#(2x − k), (22)

where the numbers hk are called the filter coefficients. Equation (22), known as the
dilation or refinement equation, is the principal relation determining multiresolution.

Since � ∈ W0 and W0 ⊂ V1, it is also known that the wavelet satisfies an equation
that is similar to relation (22):

�(x) = √2
∑
k

gk#(2x − k), (23)

where the wavelet coefficients gk are obtained directly from the filter coefficients hk [50]:

gk = (−1)khkmax−k, where k = 0, 1, . . . , kmax. (24)
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Table 1
Scaling and wavelet coefficients associated with orthogonal Daubechies wavelets with

one, two, and ten vanishing moments [50,52].

k hk gk k hk gk

D1 0 0.707107 0.707107
1 0.707107 −0.707107

D2 0 0.482963 −0.129410
1 0.836516 −0.224144
2 0.224144 0.836516
3 −0.129410 −0.482963

D10 0 0.026670 −0.000013 10 −0.029458 −0.071394
1 0.188177 −0.000094 11 0.033213 −0.093057
2 0.527201 −0.000116 12 0.003607 0.127369
3 0.688459 0.000686 13 −0.010733 0.195946
4 0.281172 0.001992 14 0.001395 −0.249846
5 −0.249846 −0.001395 15 0.001992 −0.281172
6 −0.195946 −0.010733 16 −0.000686 0.688459
7 0.127369 −0.003607 17 −0.000116 −0.527201
8 0.093057 0.033213 18 0.000094 0.188177
9 −0.071394 0.029458 19 −0.000013 −0.026670

(a) (b)

Figure 1. Scaling (a) and wavelet (b) Daubechies’ functions of order 10, with j = k = 0.

This relationship was proposed by Daubechies [50] to calculate hk’s and gk’s as-
sociated with scaling and wavelet functions with a given number of vanishing moments.
As examples, Daubechies’ wavelets with one, two, and ten vanishing moments are
presented in table 1. The D10 filter and wavelet functions, generated using the pro-
gram Wavelib [52], are also displayed in figure 1. D1, also known as the Haar filter,
is the only real-valued wavelet that is compactly supported, symmetric, and orthogo-
nal. For this wavelet system, the coefficients hk and gk are equal to

√
2(1/2, 1/2) and√

2(1/2,−1/2), respectively. The associated scaling function # actually corresponds to
the box function which is characterized by only one vanishing moment.
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Fast wavelet transform. The orthogonality of scaling functions and wavelets together
with the dyadic coupling between wavelet-based multiresolution analysis (WMRA)
spaces lead to a relation between scaling function coefficients and wavelet coefficients
on different scales. This yields a fast and accurate algorithm due to Mallat [51] named
the pyramid algorithmor the Fast Wavelet Transform(FWT). The goal is to derive a
mapping between the sequence {cjl} and the sequences {cj−1,l} and {dj−1,l}. The key
to this mapping is the dilation equation (22) and the wavelet equation (23). As demon-
strated in [53,54], the following identities which define a partial wavelet transform can
be derived:

cj−1,l =
∑
k

hkcj,2l+k, (25)

dj−1,l =
∑
k

gkcj,2l+k. (26)

In order to further decompose the space Vj−1, one applies the mapping to the sequence
{cj−1,l} in order to obtain the new sequences {cj−2,l} and {dj−2,l}. This procedure is
repeated until the full FWT is achieved. Equations (25) and (26) show that once the
elements {dj−1,l} are computed, they are not modified in the subsequent steps. Equa-
tion (26) also shows that the calculation of coefficients {cj−1,l} from coefficients {cj,2l+k}
implies a downsampling, i.e., the number of coefficients is reduced by 2. On the con-
trary, reconstruction implies an upsampling procedure, i.e., the number of data point is
multiplied by 2 at each level of resolution. Figure 2 illustrates an application of the FWT
algorithm to a finite one-dimensional signal composed of 8 data points. In this exam-
ple, the signal can be extended beyond and below the data points by periodicity, or by
padding with zeroes. The number of hk and gk coefficients is equal to 4, as in a FWT
using D2. A first application of the filter and wavelet transformation generates four co-
efficients which compose the first averaged version of the initial signal, and four detail
coefficients. A second application of the filter coefficients to the averaged signal yields
2 points for the filtered version, and 2 detail values.

Figure 2. Schematic representation of the application of the FWT cascade algorithm to the transformation
of a 8-point signal over three resolution levels. The averaged version is obtained using hk coefficients.

Details are obtained using the corresponding wavelet coefficients gk .
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Figure 3. The Mallat multiresolution algorithm. The down- and up-arrows indicate decimation and up-
sampling, respectively: (a) decomposition scheme, (b) reconstruction scheme.

The inverse mapping can be derived to obtain

cjl =
∑
k

hl−2kcj−1,k +
∑
k

gl−2kdj−1,k. (27)

The inverse fast wavelet transformis obtained by repeated application of this equation
for j = J + 1, J + 2, . . . , J0. A general scheme for the pyramid decomposition and
reconstruction algorithms is presented in figure 3.

Multidimensional cases and smoothing.A simple way to obtain wavelets in dimen-
sions higher than 1 is to carry out one-dimensional wavelet decomposition for each
variable separately [55]. The standard decomposition, as described in [55], consists
in the application of a one-dimension Fast Wavelet Transform (FWT) to each row of
data values. This operation gives an average signal along with detail coefficients for
each row. Next, these transformed rows are treated as if they formed an image, and
a one-dimensional FWT is applied to each column. The resulting values are all detail
coefficients except for a single overall averaged image.

Since we want to obtain an image at various levels of resolution, a smoothing pro-
cedure is required, which is applied before reconstructing the original signal as follows:
all details generated after a given number of decomposition levels using a FWT are set
equal to zero before a full reconstruction procedure is applied to restore the original num-
ber of data points. Reconstruction is required to keep the initial number of data values.
This is actually a procedure used in signal compression, one of the biggest application
of wavelets.
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3.3. Atomic shell approximation

In the Atomic Shell Approximation (ASA) approach, a promolecular electron den-
sity (ED) distribution ρM is calculated as a weighted summation over atomic ED distrib-
utions ρa which are described in terms of series of squared 1s Gaussian functions fitted
from atomic basis set representations [42]:

ρa
(�r − �Ra) = 5∑

i=1

wa,i

[(
2ζa,i
π

)3/4

e−ζa,i |�r− �Ra |
2
]2

, (28)

where �Ra is the position vector of atom a, and wa,i and ζa,i are the fitted parameters,
respectively, as reported in [56]. ρM is then calculated as

ρM =
∑
a

Zaρa, (29)

where Za is the atomic number of atom a. As an example, wa,i and ζa,i coefficients fitted
from the atomic 3-21G basis set for the carbon atom are reported in table 2. (Coefficients
and exponents can be seen and downloaded from [56].)

As asserted by Gironés et al. [57], the ASA of the ED function allows to describe
molecular shapes in almost the same way as ab initio quantum mechanical computations.
In this approach to generate low resolution three-dimensional (3D) functions, an ED map
is a deformed version of ρM that is directly expressed as the solution of the diffusion
equation according to the formalism presented by Kostrowicki et al. [43]:

ρa,t
(�r − �Ra) = 5∑

i=1

aa,i(1+ 4ba,i t)
−3/2 exp

(−ba,i|�r − �Ra|2
1+ 4ba,i t

)
(30)

where:

ba,i = 2ζa,i and aa,i = wa,i
(
ba,i

π

)6/4

. (31)

Table 2
wa,i and ζa,i atomic shell approximation coeffi-

cients as reported in [56] for C atom (a = 6).

i wa,i (e
−) ζa,i (bohr−2)

1 0.5079501021 0.2065113939
2 0.1888265284 0.5553428097
3 0.1765106174 7.3531983076
4 0.1125973447 22.0875917625
5 0.0141154074 107.3463850250
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In this context, t is seen as the product of a diffusion coefficient with time. On
a similar basis, Duncan and Olson [8] generated low resolution molecular surfaces by
convolving the density function with a 3D Gaussian function of appropriate variance.

4. Applications

In previous applications of low resolution molecular representations to the compar-
ison of small molecules, rigid benzodiazepine-related structures were considered [38,
40]. In the present work, a new set of drug molecules was selected after the work of
Nissink et al. [58]. These authors compared three thrombin inhibitors, MQPA, NAPAP,
and 4-TAPAP [59], at the particular resolution value of 2.5 or 3 Å (a value of 2.5 Å
is mentioned in the text, but a value of 3 Å is reported in figure 4 of [58]). All three
selected molecules adopt a star shape with three branches terminated either by a cyclic
substructure linked to a sulfonyl function (branch I), a piperidine ring (branch II), or an
amidino group (branch III) (figure 4). The three-dimensional atom coordinates of the
considered protein ligands were derived from crystallographic data reported in the Pro-
tein Data Bank (PDB) [60,61]. The PDB codes for MQPA, NAPAP, and 4-TAPAP are
1etr, 1ets, and 1ett, respectively. H atoms were added to the crystalline PDB structures
using InsightII [62] in order to generate the complete structures as described in [59].

Considering the resolution values reported in the work of Nissink et al. and the
geometry of the three molecules, this set of molecules was considered as relevant to test
the superposition approach based on graph representations of low resolution electron
density maps. Indeed, one could argue that if a critical point (CP) representation does not
permit to properly differentiate between the various chemical functions, many possible
superposition results could be obtained. The superposition algorithm that was used in the
present work is based on a Monte Carlo/Simulated Annealing (MC/SA) approach. With
respect to previous works on drug molecules which are known to bind to benzodiazepine
receptors [38,40], a slightly modified function, which is described later, was used to
evaluate the superposition results.

Figure 4. Planar structure formula of compounds MQPA, NAPAP, and 4-TAPAP.
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4.1. Electron density map calculations

All three approaches described above were applied to 128 × 128 × 128 (16 ×
16 × 16 Å) ED maps. Within the crystallographic approach, the program XTAL [37]
was used to calculate maps at resolutions of 2.5 and 3 Å, using the P1 space group
operations (figure 5) as in Nissink et al. work [58]. Atomic Shell Approximation (ASA)
ED functions were computed using an in-house program with a smoothing parameter t
equal to 1.1 and 1.5 bohr2 (figure 6), and finally, full ED maps for the three molecules
were generated using ab initio 6-31G* RHF MO-LCAO-SCF calculations. At this point,
computing valence or full ED distribution functions was a point to discuss. Indeed,
valence ED may be a more relevant property to consider when describing intermolecular
interactions. However, full ED functions were analyzed for two main reasons. The first
one is that only full ED distributions will give a view that is comparable to promolecular
full ED representations as generated through the crystallography and ASA formalisms.
The second one is that a CP analysis of a valence ED at atomic level leads to a huge
number of CPs. Indeed, ρ maxima are found both at atom and bond locations [64]. This
disappears in lower resolution images wherein important structural features vanish too.
This is for example observed for benzodiazepine-related molecules wherein chlorine
atoms, which are essential steric/lipophilic functions, are not seen at all in smoothed
ED maps. Therefore, as emphasized by Popelier [27] in his Bond Critical Point (BCP)
analysis paper, core density is essential to the representation of molecular structures.

In the case of the ASA approach, a molecular ED distribution is the summation
over squared Gaussian functions convolved with a normal Gaussian distribution function
whose standard deviation is equal to

√
2t [65]. Thus, values of t = 1.1 and 1.5 bohr2

correspond to deviations equal to 1.48 bohr (0.78 Å) and 1.73 bohr (0.92 Å), respectively.
For the wavelet-based multiresolution analysis (WMRA) approach, the only rep-

resentation that is not based on a promolecular description of the molecular ED, the
filter # that was selected to smooth the original ab initio quantum mechanical images is
the Daubechies’ filter of order 10 as presented in table 1. The procedure is implemented
in an in-house program. Four levels of decomposition followed by reconstruction with
all detail coefficients set equal to zero were needed to generate images that are similar to
those obtained using the two other approaches (figures 7 and 8). In figure 7, it is clearly
seen that images obtained after one and two levels of decomposition/reconstruction are
extremely noisy, while at further decomposition levels, images are smooth averages of
the original ED distribution functions. This is due to the scale of the ED fluctuations as
illustrated in figure 9. In this figure, a one-dimensional ASA representation of the ED
function associated with the C atom is shown together with its corresponding smoothed
versions calculated after two and four levels of decomposistion/reconstruction with the
filter D10. A way to circumvent this problem would be to use non-orthogonal filters such
as spline functions [66,67] or convolution products of Daubechies’ filters [68]. This last
approach is now considered for applications to the three molecules studied in this work.
The use of non-orthogonal wavelets presents the great advantage to avoid decimation
during the decomposition procedure. The transform is also translationaly invariant.
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Figure 5. Iso-contours of the electron density distributions calculated for molecules MQPA, NAPAP, and
4-TAPAP, using XTAL at a resolution of 2.5 Å (iso = 1.25, 1.75, 2.0, 3.5 e−/Å3) and 3.0 Å (iso = 1.0,
1.5, 1.75, 2.0 e−/Å3) superimposed to their molecular skeleton. Critical points graph representations were
obtained from topological analyses using ORCRIT (peaks: large spheres, passes: small spheres). Figures

were generated using DataExplorer [63].
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Figure 6. Iso-contours of the electron density distributions calculated for molecules MQPA, NAPAP, and
4-TAPAP, using the ASA approach with t = 1.1 bohr2 (iso = 0.125, 0.150, 0.200, 0.300 e−/bohr3) and
1.5 bohr2 (iso = 0.100, 0.125, 0.150, 0.200 e−/bohr3) superimposed to their molecular skeleton. Critical
points graph representations were obtained from topological analyses using ORCRIT (peaks: large spheres,

passes: small spheres). Figures were generated using DataExplorer [63].

Figure 7 also shows that, due to the size of the grid interval, a drastic change in
the shape of the ED contours does not appear before the fourth level of decomposi-
tion/reconstruction, i.e., in the image associated with variations of scale of 2 Å. Indeed,
smoothed images at the first, second, and third levels of decomposition/reconstruction
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Figure 7. Iso-contours (in parentheses and in e−/bohr3) of the electron density distributions calculated for
molecule MQPA using the WMRA approach with # = D10 superimposed to their molecular skeleton.

Figures were generated using DataExplorer [63].

are associated with variations still at the atomic scale, i.e., 0.25, 0.5, and 1 Å. Atomic
details are definitely lost at the fourth level, and contours thus appear a lot less corru-
gated than in the original image. The fifth level is a representation of the averaged ED
function wherein all details at a scale lower than 4 Å were discarded.

On a computational point of view, the three approaches are characterized by very
different computation times. All values reported hereafter correspond to calculations of
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Figure 8. Iso-contours of the electron density distributions calculated for molecules MQPA, NAPAP, and
4-TAPAP, using the WMRA approach with # = D10 and J = −4 (iso = 0.100, 0.170, 0.250 e−/bohr3)
or J = −5 (iso = 0.050, 0.100 e−/bohr3) superimposed to their molecular skeleton. Critical points graph
representations were obtained from topological analyses using ORCRIT (peaks: large spheres, passes:

small spheres). Figures were generated using DataExplorer [63].

128× 128× 128 ED grids carried out on an IBM R6000 model 580 for the largest com-
pound NAPAP, otherwise specified. The crystallographic approach is very fast (about 2′
at 2.5 Å resolution) but presents the disadvantage of generating areas of negative ED
values resulting from the Fast Fourier Transform truncation error. It is also limited to
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Figure 9. Original and smoothed ED functions (in e−/bohr3) of the C atom calculated using the ASA
formalism and coefficients reported in table 2. �x is equal to 0.5 Å.

the generation of promolecular descriptions of molecular ED distributions. The WMRA
procedure is reasonably fast (about 450′′ using filter D10 over four levels of decom-
position/reconstruction), but it follows the lengthy calculation of an ab initio quantum
mechanical ED map (about 3 hours on an IBM SP2 120 MHz processor). The resolution
levels that can be modeled are also strongly dependent on the grid interval of the ED
map. But the great advantage of the WMRA method is that it can be applied to any
n-dimensional molecular property, i.e., electron density, electrostatic potential, etc. The
analytical ASA approach requires medium total computing times (about 3300′′), and the
resolution, which is determined by the value of t , can be varied continuously. However,
it requires an analytical expression of the molecular property that is considered.

4.2. Critical point analysis results

After the generation of all electron density (ED) maps (figures 5, 6, and 8 left), a
critical point (CP) analysis program, ORCRIT, was applied to locate the peaks and passes
above a selected density cut-off value. This cut-off was applied to each map in order to
eliminate CPs which originate from the background noise. This is necessary, especially
for maps generated using XTAL wherein the procedure gives rise to ripples due to fast
Fourier transform truncation errors. For such maps, a cutoff of 1.0 e−/Å3 was applied.
In the frame of the wavelet-based multiresolution analysis (WMRA) approach, negative
density areas originates from the fluctuations of the wavelet function itself (figure 9) and,
in this last case, a cut-off value of 0.100 e−/bohr3 was selected.

The main locations of the peaks observed in the various smoothed ED maps are
reported in table 3 and density values are presented in figures 10–12. In these figures,
the numbering of the CPs is presented in the decreasing order of their density value.
Also, connections between CPs of the same kind, i.e., peak–peak or pass–pass, are not
drawn since they are not physically significant.
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Table 3
Composition of the critical point graphs (+ = peaks, ∗ = passes) and location of the peaks for compounds
MQPA, NAPAP, and 4-TAPAP, obtained with the program ORCRIT [28] applied to smoothed electron
density maps using the crystallographic (XTAL), analytical (ASA), and wavelet (WMRA) approaches. For
each of the three molecular branches (I, II, and III), the number of peaks and their label (in parentheses) are

reported (see figures 10–12).

Method XTAL XTAL ASA ASA WMRA D10
Resolution 2.5 Å 3.0 Å t = 1.1 bohr2 t = 1.5 bohr2 4th level

MQPA 9+, 8* 7+, 6* 10+, 7* 8+, 7* 9+, 8*
(I) SO2 group 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
(I) Quinoline 3 (4, 6, 9) 2 (2, 3) 3 (7, 9, 11) 2 (7, 11) 2 (2, 3)
(II) Carbonyl 0 1 (7) 0 1 (2) 1 (4)
(II) Carboxyl 1 (2) 1 (5) 1 (2) 1 (3) 2 (5, 15)
(II) Piperidine 1 (8) 1 (8) 2 (4, 10) 2 (4, 13) 1 (6)
(III) Amidino 1 (5) 1 (4) 1 (5) 1 (6) 1 (7)
(III) Alkyl chain 1 (12) 0 1 (15) 0 1 (8)
Other 1 (3) 0 1 (3) 0 0

NAPAP 9+, 8* 8+, 6* 10+, 13* 7+, 6* 10+, 9*
(I) SO2 group 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
(I) Naphtyl 2 (6, 13) 2 (7, 13) 2 (7, 8) 1 (8) 3 (4, 6, 7)
(I) Carbonyl 1 (2) 1 (2) 1 (3) 1 (5) 0
(II) Carbonyl 1 (3) 1 (3) 1 (2) 1 (2) 1 (3)
(II) Piperidine 2 (7, 8) 1 (4) 2 (4, 20) 1 (4) 1 (14)
(III) Amidino 1 (4) 1 (8) 1 (6) 1 (6) 1 (13)
(III) Phenyl 1 (11) 1 (6) 2 (9 13) 1 (10) 1 (5)
Other 0 0 0 0 2 (2, 10)

4-TAPAP 8+, 6* 5+, 3* 7+, 9* 6+, 5* 7+, 6*
(I) SO2 group 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
(I) Toluene 3 (7, 8, 11) 1 (5) 1 (9) 1 (9) 2 (4, 6)
(II) Piperidine 1 (2) 1 (2) 1 (2) 1 (2) 1 (3)
(III) Amidino 1 (3) 1 (3) 1 (5) 1 (3) 1 (2)
(III) Phenyl 2 (4, 5) 1 (4) 2 (6, 8) 2 (5, 7) 1 (9)
Other 0 0 1 (3) 0 1 (5)

Depending upon the resolution, various chemical groups were detected. In every
case, the sulfonyl, the carbonyl and/or carboxy, and the amidino groups led to a peak
located on the sulfur atom, on the carbon atom, and on the central C atom, respectively.
Six-membered rings are characterized by either 1 or 2 peaks. In the ASA application
with t = 1.5 bohr2, a low resolution representation, there is only one peak for the
whole naphtyl group of compound NAPAP. The presence of peaks on the alkyl chain of
compound MQPA is observed only at the highest resolution levels, i.e., in XTAL 2.5 Å
and ASA t = 1.1 images. In this very last case, N atoms located in rings are also
detectable.

It is also observed that the sulfonyl groups bear the highest density points. Such
groups should thus easily match together in a superposition algorithm using a density-
based similarity measure. In the lowest resolution images, i.e., in the ED generated using
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Figure 10. Critical point number and density value in e−/Å3 (in parentheses) of the electron density dis-
tributions calculated for molecules MQPA, NAPAP, and 4-TAPAP, using XTAL at a resolution of 2.5 and
3.0 Å. Critical points graph representations were obtained from topological analyses using ORCRIT (peaks:

large spheres, passes: small spheres). Structures were generated using XMol [69].
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Figure 11. Critical point number and density value in e−/bohr3 (in parentheses) of the electron density
distributions calculated for molecules MQPA, NAPAP, and 4-TAPAP, using the ASA approach with t = 1.1
and 1.5 bohr2. Critical points graph representations were obtained from topological analyses using ORCRIT

(peaks: large spheres, passes: small spheres). Structures were generated using XMol [69].
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Figure 12. Critical point number and density value in e−/bohr3 (in parentheses) of the electron density
distributions calculated for molecules MQPA, NAPAP, and 4-TAPAP, using the WMRA approach with
# = D10 and J = −4. Critical points graph representations were obtained from topological analyses using

ORCRIT (peaks: large spheres, passes: small spheres). Structures were generated using XMol [69].
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XTAL at a 3 Å resolution and ASA with t = 1.5 bohr2, one observes that the alkyl part of
molecule MQPA bears no peaks at all. Even in the highest resolution images, this chem-
ical group leads to one CP with a rather low density values. This implies that chemical
groups composed of C atoms only do not always appear at the same resolution level: a
ring will still show up when an alkyl chain is undetected. The order of the peak density
values can be approximately summarized as: sulfonyl > (CO(O) > or < amidino) >
alkyl chain. C-rings are not included in this sequence due to the highly variable distri-
bution of their peak density values. Since CPs, regardless of the molecular structure,
tend to be located on similar chemical groups (sulfonyl, amidino, phenyl, etc.) it is con-
cluded that there may be a possible theoretical assignment of a chemical group to a peak,
but this assertion needs to be validated through further works. In a first step to comfort
this assertion, the CP graph representations were considered for the superposition of the
three molecules under study, and results were described and compared with experiments
in the following section.

4.3. Pairwise superposition results

As already mentioned in the previous section, only peaks and passes with a density
value above a pre-determined cut-off value were considered. Passes were included in the
procedure since they allow to catch the molecular skeleton more completely than peaks
alone. A Monte Carlo/Simulated Annealing (MC/SA) algorithm was used to match each
pair of critical point (CP) graphs based on the density and distance values associated
with all critical points (CP). The use of these two properties, ρ and d, was initially
proposed in [70] and further implemented in a genetic algorithm dedicated to graph
superposition [71].

A SA simulation consists of a sequence of several Monte Carlo (MC) sampling
procedures that are carried out at progressively decreasing rates of acceptance:

p = exp(−β · RMS), (32)

where β is the parameter that controls the rate of acceptance and modulates the evalua-
tion function RMS:

RMS =
√√√√1

n

n∑
i=1

(
ρi − ρref

i

)2 + 1

nbn

nbn∑
i=1

(
di − d ref

i

)2
, (33)

where, in a completely connected graph composed of n points, the number of connec-
tions between the points is given by

nbn = n(n− 1)

2
. (34)

In formula (33), the ρ- and d-dependent terms have a similar weight. However, as
already mentioned, standardization was applied to ρ values and distances separately in
order to avoid a summation over two different contributions with different units and
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magnitudes. In a standardization procedure, each data d of a data set is transformed
according to

dstandardized = d − d
σd

, (35)

where d and σd are the mean and the standard deviation of the data set, respectively. This
approach will reveal itself to be as efficient, if not more, than the previous one wherein
no standardization was applied [38,40]. This operation is thus similar to a reweighting of
the density and distance values, in favour of the density contribution, especially for data
sets obtained using the Atomic Shell Approximation (ASA) and wavelet-based multires-
olution analysis (WMRA) approaches wherein, due to the unit system, density values are
extremely small with respect to distance values (table 4). After standardization, and in
order to force the matching of CPs of the same kind, each density value ρ (peak) value
was incremented by 10, while ρ (pass) values remained unchanged. This increment has
a null effect once two CPs of the same kind are matched together because, as described
later, the evaluation function is based on the difference of the two corresponding density
values.

Each SA run consisted of 20 MC procedures (each of 200000 iterations) that were
carried out with β ranging between 0.05 and 1. In the largest and smallest cases (17 pairs
of CPs and 8 pairs of CPs), the SA procedure took about 1500′′ and 70′′on an IBM R6000
model 580, respectively. Best CP matching results were then verified by an additional
MC run of 106 iterations with a β value selected in order to obtain a number of accepted
moves that is close to the number of rejected moves. No improvement was observed
in any of the 15 superposition calculations. Matching results were then translated into
visual molecular superimpositions using the program QUATFIT [72]. Superposition
results corresponding to the lowest RMS values obtained within each strategy are pre-
sented in tables 5–9 and figures 13–15 wherein the reference graph (the largest one of
each pair) is shown in bold.

Examination of the SA results shows that all, but two, superimposition patterns
were correctly predicted, i.e., all three branches were properly matched. When using un-
standardized data, three optimal superposition patterns were wrong. With standardized
data, the two wrong superimposition results are observed for the pair 4-TAPAP/MQPA
at the lowest resolutions, i.e., using XTAL at 3.0 Å (figure 13) and ASA with t = 1.5
bohr2 (figure 14). A careful analysis of the matched CP pairs for these two cases shows
that none of the CPs located on the amidino branch of compound MQPA, i.e., points 4
and 13 at 3 Å and points 6 and 15 at ASA t = 1.5 bohr2 are present in the matched CP
pairs. The problem probably originates from the fact that, at those two low resolution
representations, the alkyl chain of compound MQPA does not bear any CP. With the
same two approaches applied at a higher resolution level, the superposition results are in
agreement with experimental structures and modelled patterns [58].

With unstandardized data, a third mismatch is observed for the same pair of mole-
cules, described at the ASA representation level with t = 1.1 bohr2. In this case, the
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Table 4
Density (ρ in e−/Å3 for XTAL, e−/bohr3 for ASA and WMRA) and distance (d in Å)
means and standard deviations associated with all critical point (CP) data sets gen-
erated for compounds MQPA, NAPAP, and 4-TAPAP, obtained with the program
ORCRIT [28] applied to smoothed electron density maps using the crystallographic

(XTAL), analytical (ASA), and wavelet (WMRA) approaches.

Method XTAL XTAL ASA ASA WMRA D10
Resolution 2.5 Å 3.0 Å t = 1.1 bohr2 t = 1.5 bohr2 J = −4

MQPA
ρ 2.148 1.917 0.174 0.149 0.224
σρ 0.633 0.452 0.041 0.027 0.055
d 4.828 4.392 4.767 4.353 4.775
σd 2.022 1.965 2.063 2.313 1.991

NAPAP
ρ 2.112 1.855 0.170 0.150 0.227
σρ 0.622 0.470 0.035 0.029 0.055
d 5.591 5.534 5.944 4.895 5.572
σd 2.609 2.504 2.640 2.313 2.643

4-TAPAP
ρ 2.143 2.080 0.173 0.147 0.238
σρ 0.735 0.646 0.041 0.031 0.082
d 4.969 5.010 4.874 4.639 4.498
σd 2.629 2.140 2.313 2.346 2.107

Table 5
Best superposition results obtained using a SA algorithm for the comparison of the critical point graphs
obtained using ORCRIT [28] for electron density maps calculated at a resolution of 2.5 Å with XTAL [37].
For each pair of graphs, all n points of the smallest molecular graph were considered. Numbering of critical
points is presented in figure 10. The largest CP graph of each pair is in bold. Wrong CP matches are in

italic.

RMS

MQPA 0.716 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
NAPAP 1 3 2 6 4 7 17 8 13 16 14 11 15 10 5 12 9

4-TAPAP 0.701 1 2 3 4 5 6 7 8 9 10 11 12 13 14
MQPA 1 3 5 2 12 16 4 6 7 13 9 11 10 17

4-TAPAP 0.640 1 2 3 4 5 6 7 8 9 10 11 12 13 14
NAPAP 1 2 4 3 11 12 6 7 16 15 13 14 17 5

corresponding RMS value is equal to 3.817, a value which reflects the superposition of
CPs of different kinds.

A detailed analysis of all CP pairs reported in tables 5–9 shows that, even for good
superposition results, some CP pairs are structurally inconsistent. For example, in ta-
ble 5, CP pair (6,7) in compounds (MQPA, NAPAP) corresponds to the superposition
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Table 6
Best superposition results obtained using a SA algorithm for the comparison of the
critical point graphs obtained using ORCRIT [28] for electron density maps calculated
at a resolution of 3.0 Å using XTAL [37]. For each pair of graphs, all n points of the
smallest molecular graph were considered. Numbering of critical points is presented in
figure 10. The largest CP graph of each pair is in bold. Wrong CP matches are in italic.

RMS

MQPA 0.918 1 2 3 4 5 6 7 8 9 10 11 12 13
NAPAP 1 4 7 8 6 10 2 3 9 5 11 14 12

4-TAPAP 0.774 1 2 3 4 5 6 7 8
MQPA 1 3 5 8 2 12 9 10

4-TAPAP 0.596 1 2 3 4 5 6 7 8
NAPAP 1 4 8 6 7 5 12 9

Table 7
Best superposition results obtained using a SA algorithm for the comparison of the critical point
graphs obtained using ORCRIT [28] for electron density maps calculated using the ASA method
with t = 1.1 bohr2. For each pair of graphs, all n points of the smallest molecular graph were
considered. Numbering of critical points is presented in figure 11. The largest CP graph of each

pair is in bold. Wrong CP matches are in italic.

RMS

MQPA 0.717 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
NAPAP 1 13 3 2 6 14 7 12 8 4 20 21 10 5 9 11 17

4-TAPAP 3.494 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MQPA 1 10 2 11 5 3 15 4 7 14 8 16 17 13 12 6

4-TAPAP 0.395 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NAPAP 1 4 3 14 6 9 11 13 8 21 22 16 17 15 18 23

Table 8
Best superposition results obtained using a SA algorithm for the comparison of the critical
point graphs obtained using ORCRIT [28] for electron density maps calculated using the
ASA method with t = 1.5 bohr2. For each pair of graphs, all n points of the smallest
molecular graph were considered. Numbering of critical points is presented in figure 11.

The largest CP graph of each pair is in bold. Wrong CP matches are in italic.

RMS

NAPAP 0.702 1 2 3 4 5 6 7 8 9 10 11 12 13
MQPA 1 4 13 14 2 6 5 11 8 3 12 15 10

4-TAPAP 0.606 1 2 3 4 5 6 7 8 9 10 11
MQPA 1 7 3 9 13 10 4 14 11 12 8

4-TAPAP 0.560 1 2 3 4 5 6 7 8 9 10 11
NAPAP 1 3 6 9 10 12 5 13 8 11 7
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Table 9
Best superposition results obtained using a SA algorithm for the comparison of the critical point graphs
obtained using ORCRIT [28] for electron density maps calculated using the WMRA method with# = D10
and 4 levels of decomposition/reconstruction. For each pair of graphs, all n points of the smallest molecular
graph were considered. Numbering of critical points is presented in figure 12. The largest CP graph of each

pair is in bold. Wrong CP matches are in italic.

RMS

MQPA 0.873 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
NAPAP 1 4 6 2 9 3 13 5 17 8 16 19 11 10 14 18 12

4-TAPAP 0.749 1 2 3 4 5 6 7 8 9 10 11 12 13
MQPA 1 7 6 3 4 2 13 11 8 16 12 14 10

4-TAPAP 0.678 1 2 3 4 5 6 7 8 9 10 11 12 13
NAPAP 1 5 14 6 2 7 11 16 9 12 10 17 8

of points in branch II of MQPA and branch I in NAPAP (figure 10). Another inconsis-
tency is also raised due to the fact that CP 15 of compound MQPA does not have any
structurally corresponding point in NAPAP, and was thus matched with CP 5 of this last
compound. All found inconcistencies are shown in italics in tables 5–9. Such wrong
matchings are inevitable when one considers all CPs in the superposition procedures.
Indeed, a given molecular branch contains different numbers of CP depending upon the
molecular structure. This difference in the number of points is large at atomic resolution
and only reduced, but not totally cancelled, at lower resolution levels. The number of
inconsistencies (wrong matchings) is however low with respect to the number of right
ones, and does not affect the global superimposition patterns. One can imagine that,
rather than superposing all CPs, finding a common substructure between two compounds
would be more appropriate. However, this should be achieved under constraints in order
to avoid the risk to eliminate structurally important points. In the two wrong superpo-
sition patterns, which occurred at the lowest resolution levels (RMS = 0.774 in table 6
and RMS = 0.606 in table 8, respectively), almost all pairs of matched CP are wrong
ones.

Another consequence of the difference in the number of CPs between the three
molecules leads to a extremely high RMS value, 3.494, for pair MQPA/4-TAPAP de-
scribed at the ASA level with t = 1.1 bohr2 (table 7). This value originates from
two matchings between CPs of different types. Points 4 and 7 of compound 4-TAPAP
are passes, while points 11 and 15 of compound MQPA are peaks. On the contrary,
4-TAPAP and NAPAP have very similar graph structures, and the RMS value associated
to the best superposition pattern is very low, 0.395.

In conclusion, the method that presents the least number of inconsistencies is
the WMRA one. There is only one wrong CP pair obtained when superposing com-
pounds MQPA and NAPAP. The question to determine whether this is related to a non-
promolecular representation of the full ED distribution is raised. Further analyses are
thus required to answer this point.
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Figure 13. Best superposition results obtained using a SA algorithm for the comparison of the critical point
graphs of molecules MQPA, NAPAP, and 4-TAPAP obtained from electron density maps generated using

XTAL at a resolution of 2.5 (left) and 3.0 Å (right). Figures were generated using XMol [69].
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Figure 14. Best superposition results obtained using a SA algorithm for the comparison of the critical point
graphs of molecules MQPA, NAPAP, and 4-TAPAP obtained from electron density maps generated using

the ASA method with t = 1.1 (left) and t = 1.5 bohr2 (right). Figures were generated using XMol [69].
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Figure 15. Best superposition results obtained using a SA algorithm for the comparison of the critical point
graphs of molecules MQPA, NAPAP, and 4-TAPAP obtained from electron density maps generated using

the WMRA method with # = D10 and J = −4. Figures were generated using XMol [69].
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5. Conclusions and perspectives

A simulated annealing procedure was applied to critical point (CP) graphs repre-
sentations of smoothed full electron density (ED) distribution functions in order to super-
pose small biological molecules. A set of three thrombin inhibitors, already considered
in superposition calculations using low resolution data [58], was selected as reference
materials.

In the present work, three different smoothing approaches were applied which led
to very similar results. Two methods, a crystallography-based algorithm and an ana-
lytical approach, allowed the calculation of promolecular ED distributions. The third
one, a wavelet-based multiresolution analysis (WMRA), consisted in smoothing origi-
nal ED functions through the cancellation of details at a predetermined number of scales.
The crystallography-based method is the fastest, but the most time-consuming wavelet-
based multiresolution analysis is applicable to any grid representation of a molecular
property. The analytical approach presents the advantage to generate functions that are
continuously scalable, but requires an analytical description of the molecular property
considered.

A topological analysis program was then applied to the low resolution ED maps and
the obtained CP graphs revealed a structure of the ligands described in terms of chemical
groups rather than in terms of individual atoms. CP representations of the molecular
skeleton are thus interesting in the sense that reduction of chemical groups to simple
points is a procedure that is commonly used by chemists for comparing molecules, for
example, in the search for a common substructure such as a pharmacophore model.

Among the three methods used in this paper, the WMRA approach led to the most
consistent superposition results: at low resolution, structures of the different compounds
become similar, and superpositions did not present any strong inconsistencies.

An interesting perspective of the present work would consist in the comparative
analysis of full promolecular and non-promolecular ED distributions at low resolution.
Both kinds of ED distributions can be calculated using quantum mechanical formalisms
with the same basis set and be smoothed using the same WMRA approach. Non-or-
thogonal wavelets will also be tested. Their use should facilitate the analysis of detail
images which were not considered in the present work.
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